
WebRTC multipoint conferencing
with recording using a Media Server

Marc Walter
Hochschule der Medien Stuttgart

Stuttgart Media University
Bachelor’s Thesis

Author: Marc Walter
Walter.Marc@outlook.com
MatNr. 24650

Course: Bachelor Medieninformatik

Date: February 26, 2015

Supervisors: Prof. Walter Kriha, HdM Stuttgart
Dipl.Inf.(FH) Matthias Litz, BeamYourScreen GmbH

Name: Walter Vorname: Marc
Matrikel-Nr: 24650 Studiengang: Medieninformatik

Eidesstattliche Versicherung

Hiermit versichere ich, Marc Walter, an Eides statt, dass ich die vorliegende Bachelorarbeit mit
dem Titel: WebRTC multipoint conferencing with recording using a Media Server selb-
stständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel benutzt
habe.
Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden,
sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröf-
fentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden.

Ich habe die Bedeutung der eidesstattlichen Versicherung und die prüfungsrechtlichen Folgen (§26
Abs. 2 Bachelor-SPO (6 Semester), § 23 Abs. 2 Bachelor-SPO (7 Semester) bzw. § 19 Abs. 2
Master-SPO der HdM) sowie die strafrechtlichen Folgen (gem. § 156 StGB) einer unrichtigen oder
unvollständigen eidesstattlichen Versicherung zur Kenntnis genommen.

Stuttgart, den 23.02.2015

Marc Walter

Abstract
Goal is to both research and implement a multipoint communication solution that uses WebRTC
for audio and video transmission. The conference size should be arbitrary but support at least
four participants and allow multiple conferences at the same time. The solution should contain
recording functionality and allow participation of devices in restrictive network environments.

These goals were met by using a a media server that allows to significantly increase the confer-
ence size from the maximum of four when using a full mesh peer-to-peer architecture.

This thesis is separated into two parts: The first consists of an introduction to WebRTC, research
and theoretical assumptions that lead to an implementation strategy. The second part contains
information about the selected media server, follows the implementation of the prototype solution
and describes parts of its architecture.
The prototype itself is not part of this thesis.

Included are benchmark results for WebRTC conferences concerning the bandwidth requirements
for different multipoint architecture patterns and screen resolutions. Those were conducted using
the prototype application.

Zusammenfassung
Ausgangspunkt für diese Thesis ist das Ziel, eine auf WebRTC basierende Webanwendung als Kom-
munikationslösung zu schaffen, die mindestens vier Teilnehmer in einer Konferenz kommunizieren
lässt, mehrere Konferenzen gleichzeitig unterstützt, die Aufnahme der Konferenzen ermöglicht und
bei der auch Teilnehmer in restriktiven Netzwerkumgebungen teilnehmen können. Dieses Ziel wur-
de in vollem Umfang erreicht.

Hierbei wird ein Media Server eingesetzt, um die maximale Teilnehmeranzahl bei Konferenzen im
Vergleich zu direkten Peer-To-Peer Verbindungen, die bei vier Teilnehmern je nach Verbindungs-
geschwindigkeit an ihre Grenzen stoßen, fast beliebig zu vergrößern.

Nach einer Einführung in WebRTC und Vorüberlegungen für die gewünschte Kommunikations-
lösung im ersten Teil dieser Thesis werden im zweiten Teil die Auswahl eines Media Servers sowie
der Prototyp und dessen Architektur beschrieben.
Diese Prototypanwendung ist jedoch nicht Teil dieser Thesis.

Des Weiteren wurden mit der Prototyp-Anwendung Vergleiche zu Bandbreitenanforderungen von
WebRTC bei der Verwendung von verschiedenen Kommunikationsarchitekturen und Bildgrößen der
Videoaufnahmen durchgeführt und dokumentiert.

v

Contents

I Theoretical part 1

1 Introduction 3
1.1 Definition of goals . 3
1.2 Introduction WebRTC . 3

1.2.1 What does WebRTC do . 4
1.2.2 ECMAScript API . 4
1.2.3 Types of WebRTC-compatible devices . 5
1.2.4 Is it ready yet? . 5
1.2.5 More information . 5

2 Goals to achieve with the solution 7
2.1 Multipoint conferencing with WebRTC . 7
2.2 Recording conferences . 8

2.2.1 Where to record conferences . 8
2.2.2 Record mechanism . 9

2.3 Enabling a connection in a NAT environment . 10
2.3.1 Network Address Translation (NAT) . 10
2.3.2 Interactive Connectivity Establishment (ICE) 10
2.3.3 Specifics about the ICE protocol in WebRTC 12

2.4 Connecting SIP compatible devices with WebRTC devices 13
2.4.1 About the Session Instantiation Protocol (SIP) 13
2.4.2 Problems when connecting SIP and WebRTC devices 13
2.4.3 How to connect SIP and WebRTC . 14

3 Benefits of using a central media server 15
3.1 Concerning the goals . 15

3.1.1 Recording . 15
3.1.2 Number of participants . 15
3.1.3 Enabling a connection in a NAT environment 15
3.1.4 Connecting to SIP networks/devices . 16

3.2 Possible multipoint conferencing architectures . 17
3.2.1 Full mesh network . 17
3.2.2 Clarifications . 18
3.2.3 Architecture definition . 18
3.2.4 Examples . 20
3.2.5 Comparison of multipoint architectures . 21

4 Components for the solution 25
4.1 Media server . 25

4.1.1 Hardware or software based . 25
4.1.2 For the purpose of a WebRTC media server 26

4.2 Signaling application . 26
4.2.1 Connecting the media server and a participant 27
4.2.2 Client side . 27
4.2.3 Additional tasks in a production environment 28

4.3 STUN and TURN server . 28

vi Contents

II Practical part 29

5 The prototype 31
5.0.1 Copyright . 31

5.1 Media server . 31
5.1.1 Comparison of existing media server solutions 31
5.1.2 Selection of Kurento media server . 32

5.2 Signaling application . 32
5.3 STUN server . 32

6 Kurento media server 33

7 Signaling application 35
7.1 Evented architecture . 35

7.1.1 websocketHandler . 36
7.1.2 commandVerifier . 36
7.1.3 serverState . 36

7.2 Example: Start a conversation . 37
7.2.1 Step 1: Join a room . 37
7.2.2 Step 2: Send a video stream . 38
7.2.3 Step 3: Communication stream . 38

8 Benchmarking WebRTC bandwidth usage 39
8.0.4 Limiting the bandwidth . 39
8.0.5 Bandwidth recommendations for one WebRTC stream 40
8.0.6 Needed bandwidth for different conference sizes 41
8.0.7 Recommendations for different network environments 42

9 Lessons learned 43
9.1 Promises . 43

9.1.1 Example with promises . 43
9.1.2 Example with callback functions . 44
9.1.3 Benefits from using promises . 45
9.1.4 Combining the promise and error-first-callback approach 45

10 Conclusion 47
10.1 Using WebRTC . 47
10.2 Working with the Kurento media server . 47
10.3 Goals . 47
10.4 Future development . 48

10.4.1 Switching conference to the media server . 48
10.4.2 Switching conferences as needed . 48

III Appendix 49

Comparison of media servers 51
Media server solutions for self deployment . 51
Cloud based media server solutions . 53

List of Figures 55

Contents vii

List of Tables 55

List of Code Listings 57

Glossary 61

Bibliography 63

1

Part I

Theoretical part

3

Chapter 1
Introduction

Basis of this thesis was the plan to create a multi party communication solution using the peer-to-
peer technology WebRTC.
This first part contains the definition and reasoning for the goals of the solution, an introduction

to WebRTC, benefits of using a media server and a section about different components needed to
achieve the set goals and create a working prototype.
The second part starting on page 31 contains information about the implementation of the

simucos prototype.

1.1 Definition of goals
Before starting on the rationale for the prototype, the goals need to be defined:

Goal is a WebRTC conferencing prototype that
1. allows more than four participants to communicate simultaneously
2. supports recording of conversations
3. allows participants in restrictive network environments to take part in conversations
4. optionally allows SIP-Clients (soft/hard phones), and Teleconferencing systems to con-

nect to a conference

1.2 Introduction WebRTC
Web Real-Time Communication (WebRTC) is an effort that was started in 2011[1] to enable direct
real-time communication between two browsers without needing to install any browser plug-ins or
platform-specific applications.
Neither does WebRTC place any restrictions on the type of devices like computers, mobile phones

or TVs.

Usually applications in a browser communicate with a web server to receive and send data, but
when using WebRTC a direct communication channel between two peers is opened without using
any servers for the transmission of data.
The signaling that is needed for two browsers to communicate with each other is usually done using
a web server, forming the WebRTC triangle as depicted in figure 1.1.

In order for WebRTC browsers to connect to another peer, signaling is needed. This is achieved
using an SDP offer and answer mechanism, allowing the peers to exchange IP addresses, port
numbers and other information like supported codecs.
This signaling is not defined in WebRTC and usually a web server is used to help peers discover

each other and to exchange the SDP information, forming the mentioned triangle. After the initial
exchange, the web server is not needed anymore.

4 Chapter 1 Introduction

Figure 1.1: WebRTC triangle[2, chapter 1]

1.2.1 What does WebRTC do

WebRTC exposes ECMAScript1 APIs that allow a participant to use a web application that re-
trieves audio and video streams from cameras or microphones.
Also it allows to establish a peer-to-peer connection using standardized protocols between two

compatible browsers. This connection may be used to send arbitrary data in both directions
between the two peers, for instance a real-time video chat..

1.2.2 ECMAScript API

The API exposed by the browser contains three major interfaces:
The RTCPeerConnection object is the main object used by a web application in the browser.

It encapsulates the creation of connections between peers[3], handles and parses SDP2offers and
answers, has an associated ICE agent to find and negotiate usable IP addresses and port numbers,
and both receives remote media streams and sends local media streams using the peer connection.
A media stream is requested in the browser using the MediaStream API[4, section 10.2.1] and

can afterwards be used in the RTCPeerConnection.
Arbitrary non-media data is sent between peers using the TCP based RTCDataChannel[5]. It

is used to send files, information about the quality of the stream or arbitrary messages.

1JavaScript is one implementation of [ECMAScript] as defined by ECMA-262
2SDP contains information how to initialize multimedia communication sessions, like IP addresses, media types or
media codecs and was defined in [RFC 4566]

1.2 Introduction WebRTC 5

1.2.3 Types of WebRTC-compatible devices
The current standard defines different types of WebRTC-compatible devices[6, section 2.2].
The most important ones are:
First a WebRTC device, it conforms to the protocol specifications, meaning it supports the

needed UDP based protocols for the peer connection and the TCP based ones for the the data
channel, including encryption for both packet types using TLS and DTLS.

A WebRTC browser is the second type, which is a WebRTC device that also supports the full
ECMAScript API.

The third is a WebRTC gateway, which is a WebRTC device that mediates media traffic to
non-WebRTC devices and may not conform to all protocol specifications.

A WebRTC gateway might be used to enable audio-only communication between a PSTN
telephone and a WebRTC browser or one-way communication between a participant using a We-
bRTC browser and another device that only shows the first participants stream, but cannot send
anything on its own.

1.2.4 Is it ready yet?
In February 2015, three browsers (Google Chrome, Mozilla Firefox and Opera) support real-time
communication with WebRTC directly, and the mobile platforms Android and iOS are also sup-
ported.
That way 60-80% of desktop browsers3are compatible, and also about 90%4of all smart phones

could use WebRTC.

Additionally, browser plug-ins exist for both Internet Explorer and Safari to support WebRTC5.
This increases the number of potentially WebRTC compatible desktop browsers to about 90%.
Microsoft is also planning to support WebRTC in its coming browser and is actively contributing

to the ORTC[8] specification[9] and its implementation, which is based on the WebRTC 1.0 spec-
ification[10] with some minor changes6and maintained by the W3C Object-RTC API Community
Group.

1.2.5 More information
Currently, two standards organizations collaborate to develop WebRTC:
The browser API[10] is defined by the W3C WebRTC Working Group and contains the expected

behavior and functions a WebRTC compatible browser needs to implement.
The IETF RTCWEB Work Group defines the protocols used for the transmission of content,

how connection management is initialized and security considerations[6].

5Statistic gathered by StatCounter
http://gs.statcounter.com/#desktop-browser-ww-monthly-201408-201501-bar

5This statistic was gathered by IDC[7]
5One of those is developed by temasys https://www.temasys.com.sg/solution/webrtc-plugin
6Differences between WebRTC and ORTC include exchanging the text-based SDP for a JavaScript Object Model,
and access to lower level functions of the media stream transmission.[9].

http://gs.statcounter.com/#desktop-browser-ww-monthly-201408-201501-bar
https://www.temasys.com.sg/solution/webrtc-plugin

7

Chapter 2
Goals to achieve with the solution

2.1 Multipoint conferencing with WebRTC

To achieve multipoint communication, several architectures have proven usable.

Figure 2.1: Possible multipoint communication architectures
Source: Ilya Grigorik[11]

As WebRTC is a technology that is used to create direct peer-to-peer connections between two
entities, the most natural way of connecting multiple participants would be to use a full mesh
network as displayed in figure 2.1 for a four-way call.
The figure also shows that the number of connections in a full mesh network increases exponen-

tially with the number of participants, which limits the size of a reliably working conversation to
about four1.
Apart from the bandwidth the second limiting factor to a conversation size is the processing

power of the used device.
While most modern mobile devices have a hardware decoder for H.264, the support for VP8 is

on most devices limited to the software which adds more processing strain.

In a conference with four participants, the device needs to encode one outgoing media stream
and upload it to three different destinations, and also decode three incoming video streams in real
time or having a conversation will not work reliably.

1The tests conducted with the prototype implementation in section 8 on page 39 showed that connecting more than
four participants in a full mesh network would consume about 6.1 Mbit/s of bandwidth at a resolution of 640x480
pixels and 15 frames per second. The bandwidth needed for a conversation with seven participants would exceed
the maximum possible bandwidth in a WLAN 802.11b network.

8 Chapter 2 Goals to achieve with the solution

2.2 Recording conferences

In order to fulfill the goal of recording conferences two questions need consideration first: Where a
recording is created, and how a recording is created.

2.2.1 Where to record conferences

To record a conference, three possible setup variants are possible, that do not change the specifics
of the record mechanism.

A user records the conference

The simplest option would be to record a conversation on the client side. As each client already
receives every participant’s media stream in order to display it, the same videos that are displayed
to the client might be recorded to the client’s file system.
Unfortunately, this would need a high amount of processing power on the client’s side, that just

might not exist on a mobile handset device or slow down another crucial application running on
the clients computer.
Also, it would complicate the distribution of the recorded conference, because each participant

would need to request the specific file from the recording client or record the conference himself.

A dedicated client records the conference

A client connects to the conference without sending any data, but only receives the data sent by
other participants.
This would limit the amount of processing power needed on the recording device as it does not

need to record, encode and transmit its own media stream, but only receives streams.
Unfortunately it would also increase the number of connections needed to make the conference

work as it increases the participant count by one.
This client could be either another device one of the participants owns, or it might be a computer

program on a server, which would also be able to distribute the recorded conference after it was
ended.

A central entity records the conference

If each participant would send his stream to a central entity, that entity might be used to record
the conference.
The central entity could act like another participant, which would be just like option two, or it

could be used to implement a centralized architecture.

Two different types of devices may be used for this:
The first would be a TURN server because it might already be needed for some networks to

create a connection2, but it needs to be able to break the TLS encryption of the communication in
order to decode the media stream and save it.
Or a media server might be used that additionally needs to support the WebRTC protocols

and the two mandatory codecs VP8 and MP4.

2A TURN server is needed in some NAT environments, as described in section 2.3 on page 11.

2.2 Recording conferences 9

2.2.2 Record mechanism
How to record a conference boils down to two possible actions:
First, each participant’s stream is saved directly to a file. This might also be done on a clients

side, and the recorded file could be uploaded to a media server or just distributed to all other
participants afterwards.
The second option would be to record all participants in the conversation. In that case still each

participant might be recorded separately and mixed together into one video file. Either as multiple
tracks in one video3, or mixed into one video that shows for instance all videos next to each other
like a video wall or another setup that shows for instance the current speaker and maybe the last
few speakers, too. Some examples are depicted in figure 2.2

Figure 2.2: Exemplary video wall configurations

If a custom video player tool is used, the information which participant is speaking at the mo-
ment might be saved and the tool can use either multiple files or the file with multiple streams to
display the most active/important speaker correctly.

3For example the matroska file format[12] allows multiple tracks.

10 Chapter 2 Goals to achieve with the solution

2.3 Enabling a connection in a NAT environment
2.3.1 Network Address Translation (NAT)
NAT is a mechanism that is in wide adoption both because the number of IP addresses is finite
and due to security concerns: The routing device translates IP addresses from one space to another
and is both able to masquerade the internal IP addresses, and to provide a convenient way to send
data to the desired host.

Figure 2.3: Network Address Translation4

If a direct connection between peer A and peer B should be started, it will not work if only a
signaling application is used, because the signaling application only knows the public IP address,
which belongs to a routing device.
Even if the peer were to pass his local IP address to the signaling application, still no connection

could be created because the clients’ IP address would not lead to the client in the signaling
application’s address space, or like in figure 2.3 both devices could even propagate the same local
IP address.
Masquerading an IP address behind the router’s IP address and a specific port number is often

call port address translation (PAT) or network address and port translation (NAPT) and very
common, because the number of IP addresses is finite. The router uses the port number on incoming
connections to reroute the packet to the specific host without allowing any direct connections to
this host or publicly announcing its IP address.[13]
In order to establish a two-way connection the signaling application needs to gain access to a

reliable IP address and port number combination, which will arrive at the desired peer.

2.3.2 Interactive Connectivity Establishment (ICE)
To achieve this, the Interactive Connectivity Establishment technique was standardized in [RFC
5245], and provides a protocol to enable NAT traversal for UDP-based multimedia sessions with
an offer/answer model.

It consists of two sub protocols: The Session Traversal Utilities for NAT (STUN) protocol
and in case the STUN protocol does not return usable IP candidates, Traversal Using Relays
around NAT (TURN), which is actually an extension to STUN may be used.
Both protocols communicate with a publicly available server.

3The diagram was created with the web tool gliffy http://www.gliffy.com/

http://www.gliffy.com/

2.3 Enabling a connection in a NAT environment 11

STUN

The STUN protocol uses the server to open connections from the peer using UDP packets.
First it sends an offer and the server responds with an answer containing the public IP address of
the client and a port number.
This process is repeated several times to ensure all possible IP candidates are gathered and the

client may try multiple combinations before not being able to establish a connection.

For most cases4, STUN is enough to establish a connection, but sometimes the NAT router is too
restrictive and a connection won’t be able to created.

Problems finding public IP candidates using STUN

An example for such a setup is a symmetric NAT[RFC 3489, section 5], where every time when a
client tries to access another server, another port is used for the mapping.

Figure 2.4: Example for a symmetric NAT4

In this case, the STUN server will return an IP candidate that can establish a connection to the
STUN server, but if the client uses this candidate to open a connection to another server, that
server’s answer will be rejected by the router because it would need to use the port assigned to the
new connection and not the one to the STUN server.

TURN

To create a two-way connection in such an environment, all data needs to be routed over another
relay server. This is achieved using the TURN protocol and a TURN server.

Figure 2.5 shows how a connection between the TURN client and Peer A or Peer B is established
using the TURN server as a connector, relaying all data over it.
That way it is possible to create a connection to the peers, but the TURN server adds more

delay to the transmission and has high maintenance costs.
Using TURN servers should generally be kept to a minimum.

4In 2005, a huge number of networks were tested by ISPs and Bryan Ford[14], and 82% of them worked with STUN

12 Chapter 2 Goals to achieve with the solution

Figure 2.5: Traversal Using Relays Around NAT (TURN)
Source: [RFC 5766]

2.3.3 Specifics about the ICE protocol in WebRTC
WebRTC uses the gathered IP and port candidates to establish a direct connection to the other
peer.
First the peer connection object tries to connect to all candidates using UDP, if that fails it tries

to open a connection using TCP, then http and in the end https[11, chapter 18].

If all of these tries do not result in an opened connection, a TURN server will be used if one was
defined or communication between the two peers will not be possible.

2.4 Connecting SIP compatible devices with WebRTC devices 13

2.4 Connecting SIP compatible devices with WebRTC devices

2.4.1 About the Session Instantiation Protocol (SIP)

SIP is a standard to facilitate Voice over IP or video chat communication sessions defined in [RFC
3261].
SIP clients exist for instance as Software or hardware IP telephones. Also many Teleconferencing

systems use the SIP protocol. Each device or client is called a User Agent (UA).

Figure 2.6 shows how a connection is established by first sending an INVITE message to the other
party. This message also contains the SDP information as defined in [RFC 4566] that could look like
depicted in the same figure. This information is used by the called UA to select the communication
channel and codecs to be used. Then he returns an OK message and after the caller has sent an
acknowledgment, the media session is established.
The codecs are passed as a sorted-by-preference-list, so the callee can choose the codec that fits

both UAs best.

Figure 2.6: SIP session establishment example with excerpt of SDP data
Source: [15, chapter 2]

2.4.2 Problems when connecting SIP and WebRTC devices

Codecs

Mandatory codecs of WebRTC5 are Opus as defined in [RFC 6716] and G.711 in PCMA and PCMU
as defined in [RFC 3551, section 4.5.14].
There are no restriction on the codec that a SIP device may use, but also there is no mandatory

codec that all devices must understand. This may cause problems when WebRTC and SIP devices
try to communicate.

Types of devices

SIP does not enforce specific requirements on its User Agent devices, for instance a PSTN telephone
would be treated equally to a teleconferencing solution that supports five different cameras and as
many microphones.

5Mandatory Codecs for WebRTC are defined by the IETF[16]

14 Chapter 2 Goals to achieve with the solution

2.4.3 How to connect SIP and WebRTC
To include SIP compatible devices into a WebRTC conference, either the SIP UA needs to support
one of the mandatory WebRTC codecs, or a media bridge is needed to transcode the streams to
formats that the endpoints understand.

A WebRTC gateway could be used for instance to convert the H.323 standard to an Opus or G.711
audio stream and connect a PSTN telephone to the WebRTC session.

This media bridge functionality could also be provided by a central dedicated media server, where
direct support for any needed codecs could be installed.

15

Chapter 3
Benefits of using a central media server

3.1 Concerning the goals
As the title of the thesis already suggests, a media server was chosen to work as a central hub in
the setup.
This decision simplifies reaching the goals defined in section 1.1 and results in some additional

side benefits like additional architecture options1.

3.1.1 Recording
Even though for recording no central media server is needed, each participant’s stream would have
to be sent to the recording entity, adding to the total number of connections.
Also, because not every participating device might have the necessary processing power and free

space in its file system to record the conversation, no participant should be chosen as a recorder
without their consent.
Adding recording to the media server is simple because the connection between the peer and the

media server is already decrypted on the server and the encryption does not need to be broken as
it would be the case when a TURN server would be used.

3.1.2 Number of participants
As each participant sends one stream to the recorder, it would also be a good idea to use the
recorder as a central multicast point to reduce the number of needed connections.
Even if each participant were to receive the unaltered stream of every other participant, at least

the number of outgoing streams would be reduced to one on the clients’ side.
The media server, with a faster connection and higher processing power than any of the partici-

pants, would handle the multicasting of the stream and distribute it to all other participants.

Each media stream is decrypted end-to-end, which is why a simple hub would not suffice in order
to reduce the strain on the clients’ side, because to multiply the stream, the distributing hub needs
to be able to access the decrypted data streams.
Just like the recorder, the multiplexer would need to break the encryption. When using a media

server this is not necessary as each peer connection ends at a WebRTC endpoint on the media
server anyway.

3.1.3 Enabling a connection in a NAT environment
Ensuring participants behind a NAT to connect is easier when a Media Server is used, because
the Media Server itself will have a publicly available IP address and connecting to it will not be a
problem for any participant.
In order to retrieve a public IP and port combination, a STUN server will be needed. A great

option would also be to use the media server as the STUN server, as even if the participant is
located behind a symmetric NAT2, the connection would be established.

1Relayed and mixed architecture as described in section 3.2.

16 Chapter 3 Benefits of using a central media server

That way the number of networks where a TURN server is needed to establish a connection with
the media server would be further decreased3

3.1.4 Connecting to SIP networks/devices
In order to connect SIP compatible devices to a conversation on the media server, a WebRTC
gateway could be used that will connect to a WebRTC endpoint on the media server.
Also ensuring a connection between a telephone switching system4and one WebRTC gateway or
media server lends fewer obstacles than connecting the telephone switching system to each WebRTC
compatible device.
Another benefit of using a Media Server is, that it can act as a media bridge and transcode the

streams between proprietary or open codecs to the supportedWebRTC codecs and allow conferences
with otherwise not compatible SIP clients or even the inclusion of PSTN telephones.
For instance trancoding between the widely used ITU codecs5that are available in H.323 or SIP

environments[17], but are not supported by WebRTC compatible browsers as of now, or any other
number of proprietary audio or multimedia codecs.

3The number of networks needing a TURN server would be lower than the 18% that Bryan Ford[14] measured.
3A NAT where each connection to another server is routed through another IP and port combination, as depicted
in figure 2.4

4For example Asterisk http://www.asterisk.org/, an open source telephone PBX (private branch exchange) sys-
tem

5Several audio codecs are specified by the ITU[18], for instance G.722 and G.729

http://www.asterisk.org/

3.2 Possible multipoint conferencing architectures 17

3.2 Possible multipoint conferencing architectures

All multipoint conferencing architectures in this section are based on a generic star structure, as
depicted in figure 3.1 and use the media server as a central hub.

Figure 3.1: Star network

3.2.1 Full mesh network

Without a central hub, the only option to connect all participants would be using a full mesh.
It would also be possible to use one participant as a central point but that would add too much

strain on the device for conferences with many participants.
In a full mesh, each participant sustains one full-duplex connection to every other participant as

shown in figure 3.26.

Figure 3.2: full mesh network with four participants

6This limits the maximum feasible conference size as shown in section 8 on page 39.

18 Chapter 3 Benefits of using a central media server

3.2.2 Clarifications

About media streams and media tracks in WebRTC

The WebRTC standard allows one media stream to contain multiple audio and video tracks.[4,
section 4]
This would allow the media server to add multiple participants to one file stream without needing

to recode the entire stream.
Unfortunately, this feature is not usable for this solution yet. Even though both Google Chrome

and Mozilla Firefox (nightly build) support multiple tracks, the implementation and interaction
differs too much to be compatible.
Also Mozilla Firefox has trouble adding tracks to an existing media stream.
The current state of support for multiple media tracks in one stream as of February 24, 2015 is
depicted in figure 3.3, where the feature is called Multiple Streams.

Figure 3.3: Current multiple track support in a media stream
Source: &yet[19]

3.2.3 Architecture definition

Three properties can be used to define the different types of media servers and their network
architecture. Since multiple sources were used to gather this list, and most sources use different
naming schemes or meanings for specific words, this part will first explain what each property
means in this document7.

Stream transmission

A media server transmits streams either in a specific or a general manner:
In a specific transmission mode, each participant receives one or more streams tailored for that
participant, he would never receive the video stream he sent to the media server. The media server

7Naming is kept close to the naming used in the IETF document about RTP topologies defined in [RFC 5117] and
the draft of the obsoleting document for [RFC 5117], in its current state[20].

3.2 Possible multipoint conferencing architectures 19

needs to either duplicate or transcode all incoming streams and create a new stream for each par-
ticipant, resulting in a high workload.
When all participants receive the same stream(s) from the media server, this is called a general
transmission. It is possible that a participant receives the same stream that he already sent to the
media server.

Stream handling on the media server

Relay or Mixer: A relaying media server sends multiple media streams to each participant. Also
a media server that uses one media stream to send multiple media tracks to each participant is
considered a relay.
A mixing media server sends only one media stream to each participant. If it sends only the video
of one participant or mixes multiple streams into one new video is not relevant.

Selection of streams

A media server could act either as a Selective Forwarding Unit (SFU) or a Multipoint
Control Unit (MCU): While a MCU would ensure that every participant receives the stream
of every other participant, a SFU would only forward a selected number of streams.
For instance could a SFU be configured to only forward the streams of the currently speaking

participants and to drop the other participants’ streams.
Another Option would be to display four participants in a grid and only forward the audio streams
of the additional participants.
This would limit the transferred data to what is actually needed, and as only one mixed video is
sent to all participants, the media server only needs to encode this one stream resulting in lower
server costs.
A MCU would ensure that each participant receives all data streams, but would have high

requirements concerning the network interface, which would result in high server costs.

20 Chapter 3 Benefits of using a central media server

3.2.4 Examples
How would a certain type of media server behave?
Some examples:

1. A relayed specific MCU (RSM)
The media server receives the media streams of each participant and sends it to every other
participant. Before sending the stream to a participant the stream is transcoded to another
resolution depending on the recipient’s screen size.

2. A mixed general SFU (MGS)
The media server receives the media streams of each participant and transcodes them as
necessary. It sends the same video to every participant, but the video shows a grid with the
video feeds of the last nine speakers and contains all mixed audio channels.

3. A relayed general SFU (RGS)
The media server receives the media streams of each participant and transcodes them as
necessary. It sends the same four video streams to every participant, but each as its own
media stream. Three of the streams show the first three participants in the conference, the
fourth shows the currently speaking participant.

3.2 Possible multipoint conferencing architectures 21

3.2.5 Comparison of multipoint architectures
Whether a media server is used as a MCU or a SFU does not affect the following comparison much,
thus it is omitted for brevity.

Relay

A relaying media server sends multiple media streams to each participant. Also a media server
that uses one media stream to send multiple media tracks to each participant is considered a relay8.

Figure 3.4: A relaying media server

The media server is used as a relay and sends multiple streams to each participant. The needed
processing power on the server is low, but the bandwidth requirements are high.
For a participant, a relay is similar to a full mesh network between all peers as he receives one

stream per other peer in the network. But each participant only needs to upload one stream,
resulting in a lower needed bandwidth on the client’s side.

8Instead of relay, very often the term router is used

22 Chapter 3 Benefits of using a central media server

Table 3.1: Comparison relaying media server
Relayed Specific MCU/SFU

Pros Cons
participant handle two media streams decode n−1 video tracks and (n−1

or 1) audio tracks
Mobile phone might receive an UHD
stream

media server no transcoding9 handle many streams (n incoming
and (n − 1) · n outgoing)

Relayed Specific MCU/SFU
Pros Cons

participant handle two media streams decode n−1 video tracks and (n−1
or 1) audio tracks

Media tracks are generated for
the participant (network settings,
screen size)

media server handle many streams (n incoming
and (n − 1) · n outgoing)
transcode many streams10

detect participant performance indi-
cator11

9The media server would need to transcode between codecs if the participants do not support the same codec. But
in WebRTC both H.264 and VP8 are mandatory for the participants’ devices to implement.

10Either for each participant or for a number of presets
11network speed, screen size

3.2 Possible multipoint conferencing architectures 23

Mixer

A mixing media server sends only one media stream to each participant. If it sends only the video
of one participant or mixes multiple streams into one new video is not relevant.
A media server that uses one media stream to send multiple media tracks to each participant is

considered a relay.

Figure 3.5: A mixing media server

The media server receives all participants’ media streams and sends one media stream in return.
The needed processing power on the server is very high if a new video stream is created, but the
bandwidth requirements are low.
For a participant, a mixer is similar to a direct peer-to-peer connection. Each participant uploads

one stream and downloads one stream. The bandwidth requirement on the client’s side remains
the same no matter how many participants attend the conversation.

24 Chapter 3 Benefits of using a central media server

Table 3.2: Comparison mixing media server
Mixed Specific MCU/SFU

Pros Cons
participant handle two media streams Participant might receive himself

decode 1 video track and 1 audio
track

Mobile phone might receive an UHD
stream

media server stream one video to all participants mix all incoming video streams into
new one

number of connections (n incoming
and n outgoing)

One codec must be available on all
devices

Mixed Specific MCU/SFU
Pros Cons

participant handle two media streams cannot record all participants of
conference locally

decode 1 video track and 1 audio
track
Media tracks are generated for
the participant (network settings,
screen size)

media server number of connections (n incoming
and n outgoing)

mix all incoming video streams into
new one
transcode many streams12

detect participant performance indi-
cator13

12Either for each participant or for a number of presets
13network speed, screen size

25

Chapter 4
Components for the solution

In order to achieve the goal of a web application that allows multiple participants to start and
record conversations using WebRTC three components are needed:
A media server, a signaling application and a STUN or TURN server.

For media processing and handling a dedicated media server should be used, because the de-
mands to processing power and network interface throughput are very high.

The signaling application is the linking element between the participants in a conversation,
and between the media server and the participants. It needs to create rooms on the media server
and send participants’ data to it. It may also be used as a load balancer to distribute participants
to multiple media server instances.

A STUN or TURN server is needed to provide the participants with their public IP addresses
and ports if they are located behind a NAT router.

4.1 Media server

The main purpose of media servers is the handling of many media streams while increasing the
delay of the stream as little as possible.
It needs to transcode media streams between different resolutions and codecs as fast as possible.

Transcoding of media streams in real time is needed if it should be used in a communication
application.
And it allows multiplexing of one stream, a resources-saving way of splitting or multiplying a

media stream and sending it via its network interface to multiple recipients.

4.1.1 Hardware or software based

Both hardware and software based media servers exist, but for this document only software based
media servers are relevant, because specific hardware is very expensive and not easily obtainable.
A hardware based media server would for instance use a customized processor architecture

and an adjusted operating system1. In the last years, many graphics cards were added to a server
to allow faster video encoding and decoding, but the algorithms are often not optimized for the
massive parallelization that is possible when programming graphic cards.
Also, hardware cards exist for encoding for instance H.264 video streams faster than would be
possible using multiple CPU cores.
A software based media server uses multiple CPU cores to achieve parallelization and the

media server programs are usually written in C and optimized for speed and only media handling.

1For instance a RISC based one like the HP 9000 series[21].

26 Chapter 4 Components for the solution

4.1.2 For the purpose of a WebRTC media server

In this case, the media server needs to be able to act as a WebRTC device and create a peer
connection to a WebRTC browser.
It needs to negotiate and establish the encrypted connection to the other peer and receive and send
the media stream containing both audio and video tracks.
The ability to receive arbitrary messages using a data channel is not needed, so the media server

may also be classified as a WebRTC gateway.

Another good option would be the ability to support the session instantiation protocol (SIP), to
connect to SIP compatible devices and connect them directly to WebRTC compatible devices.

Stream handling

The media server needs to save streams to a file system, both to local disks and network shares.
That way the participants may download the recorded conference after it is finished.
In order to handle and save the media streams, the RAM should be generously sized and fast,

and also the writing speed of the connected hard drives is crucial. This server will not be cheap if
it needs to support more than three or four conversations at the same time.

Transcoding capabilities

As WebRTC defines H.264 and VP8 as mandatory codecs[22], the media server needs to support
both. For H.264 a license should be obtained2.
In the future the respective succeeding video codecs, VP9 and H.265 need to be supported, too.

The transcoding of these formats, and maybe some additional codecs that are used in the commu-
nication of legacy SIP communication systems needs to be supported in real time without adding
additional delay to the streams.

4.2 Signaling application

The signaling application can be divided into multiple parts:
Some are only relevant on the server side of the signaling application, some are only relevant for

the client, and some parts are needed both on the server and the client side, but need different
implementations, like the messaging system.
If the messaging system is to be used for the signaling of WebRTC peer connections, it needs to

be implemented so that arbitrary messages can be exchanged between the clients and the signaling
application3. It is used to supply all clients with needed SDP information and ICE candidates of
the other peers or WebRTC endpoints on the media server to establish peer connections to the
media server and to receive media streams.

In order to create a WebRTC connection, ICE candidates need to be passed between two peers.
The fastest way would be to store the candidates in the signaling application so if another user
tries to connect, he could receive the gathered candidates and try to establish a connection.

2Cisco has open sourced their implementation of H.264 under a permissive BSD license and pays the needed licensing
fees to MPEG LA if the compiled binary is used[23]

3Right now text-based SDP is used, but in the future a JavaScript Object Model will be used[9].

4.2 Signaling application 27

Also the SDP offer of each participant can be saved in the signaling application, which also
contains some ICE candidates.

The clients should be able to send and receive chat messages in the group. This should work
without creating new connections. Each client should send the messages to the signaling applica-
tion and it should relay the messages to the other participants. That way, a persistent chat log
could be created instead of a system, where the user only sees messages that were posted to a room
while he was inside that room.

4.2.1 Connecting the media server and a participant

The media server should act like a normal WebRTC device and use a WebRTC peer connection
to connect to a participant. This includes that it must receive an SDP offer, generate an answer
and send it to the other peer. This sending of offer and answer messages is done by the signaling
application.
The signaling application should be enabled to create WebRTC endpoints on the media server

for the participants of a conference to connect to. A wrapper for remote procedure calls is needed.
On the server side a system that supports rooms or groups conference is needed.

The state of participants needs to be kept, too. This includes a display name, a unique user id,
and an optional room id.
One room id will suffice because a use case where one person might speak in two or more

conferences is not considered feasible.
The room id could also be used to provide a way for the users to download the recorded conferences
after they have finished.
Additionally, the WebRTC endpoints that were created for a user on the media server should

be kept in order to close and release them after a user has exited from a conversation to keep
unnecessary memory consumption on the media server to a minimum.

4.2.2 Client side

On the clients’ side a way is needed to display chat messages and to show videos.
Also the client needs to be able to create rooms (or group conferences), and to enter or leave
existing rooms.

User interaction flow

First a user enters the main page of the signaling application. A list of rooms is displayed that the
user may join or additionally he may create a new one.
After the user clicked on the room, the room view is displayed. There he may choose to start

the capturing of a video from his camera and microphone. Once the WebRTC peer connection to
the media server is established, he should be displayed in the room for other users to see. Also his
captured stream should be displayed on the page, but muted.
As other users join the room, their name should be displayed and once they also transmit their

streams, they should also be displayed in the room.
The user may also hit the leave button to exit the conference and continue on to the main page

to join another room.

28 Chapter 4 Components for the solution

4.2.3 Additional tasks in a production environment
In a production environment, further things should be considered, for instance could the signaling
application be used for load balancing capabilities and to ensure security measures.
The signaling application is of light weight and may also be used as a load balancer to distribute

participants to multiple media server instances.
The signaling application and its load balancing abilities could also be used to protect the media

server from malicious (D)DOS attacks.

4.3 STUN and TURN server
For WebRTC to work reliably, a STUN server is needed to provide the public IP addresses of the
participants.
To use that service, a free STUN server4, a bought one or a self hosted might be used.
As written before, according to a study released by Bryan Ford??, in about 18% of the tested
networks, a TURN server is needed to establish a peer to peer connection that may be used for
WebRTC.
If the STUN server uses the same IP address as the media server, it is even more unlikely that a
TURN server is needed, as shown in section 3.1.3 on page 15.

The best option would be to use a server that is both a TURN and a media server, but as of
February 2015, no such option implementation exists yet.
To use two different applications on one machine to achieve this goal would use a lot of resources5and
most likely not work in a reliable way.

4A list of free to use STUN servers[24]
5The amount of data that needs to be processed on the machine would be be doubled, because the TURN server
forwards the encrypted data stream in a new encrypted connection and the media server needs to decode the new
stream and send it back to the TURN server where it will be embedded into another connection again.

29

Part II

Practical part

31

Chapter 5
The prototype

The prototype of a WebRTC multipoint conferencing solution for more than four participants
that allowed recording using a Media Server was implemented as simucos - simple multipoint
conferencing solution.
As depicted in figure 5.1 it consists of a media server, a signaling application on the server and a
web application on the client’s side.

Figure 5.1: Prototype application overview

5.0.1 Copyright

The rights to simucos belong to BeamYourScreen GmbH and the source code is not enclosed in
this document.
General information about different parts of the solution, lessons learned and challenges during the
development are documented in this part of the thesis.

5.1 Media server

Main focus of this thesis is to find out how multipoint conferencing with recording can be achieved
for multiple participants using WebRTC.
That is why the implementation of a new media server is out of the scope of this thesis and it

was decided at the beginning to evaluate existing media server solutions and use one.

5.1.1 Comparison of existing media server solutions

Many different possibilities were evaluated and a short listing of that evaluation is located in the
appendix on page 51.
Most of those solutions may be deployed for self-hosting, but also a number of cloud based hosted
services were investigated and documented.

32 Chapter 5 The prototype

5.1.2 Selection of Kurento media server
After careful consideration, the Kurento media server[25] was chosen because it supports
transcoding between the two required codecs H.264 and VP8[22], and is released under the permis-
sive LGPL license that allows to use it unaltered in a commercial environment.
It also supports the concept of pluggable media pipelines that allows the implementation of both

mixed and relayed media servers1, and extensive documentation.
Also a JavaScript API and interface implementation is included, that allows the same functional-

ity as connecting to the media server from a Java Application Server, without needing to implement
a new wrapper for remote procedure calls.

The Kurento media server can be built on any Linux machine and a pre-compiled Debian package
of the stable version is also available, which makes it very easy to set up.

In the programmed prototype, the media server and signaling application are running on the
same machine. The media server is started as a system service and the signaling application is
started as a Node.js application.

5.2 Signaling application
The signaling application was written for Node.js2 and uses the following node modules and
JavaScript components.

Table 5.1: Third party code used in the signaling application

Component License Description
Adapter.js3 Apache 2.0 Unifies the browser interfaces for WebRTC functions
Bower4 MIT A package manager for Node.js and the web
Express5 MIT Web framework for node.js - used to serve files to client
Gulp6 MIT Build tool to minify code and styles for production
Kurento-client7 LGPL Needed for RPCs to the Kurento media server
Q8 MIT Library for promises
Socket.io9 MIT WebSocket server and client

5.3 STUN server
For this prototype a list of free STUN servers[24] was used instead of setting up an own STUN
server.
In production several STUN servers should be used, or one STUN server should be deployed to
each instance of the media server in order to be certain about the quality of service.

1Mixed and relayed media servers are defined in section 3.2 starting on page 21
2Node.js[26] is an application runtime and web server.
3Adapter.js: https://github.com/Temasys/AdapterJS
4Bower: http://bower.io/
5Express: https://github.com/strongloop/express
6Gulp: https://github.com/gulpjs/gulp
7Kurento-client: https://github.com/Kurento/kurento-client-js
8Q: https://github.com/kriskowal/q
9Socket.io: http://socket.io

https://github.com/Temasys/AdapterJS
http://bower.io/
https://github.com/strongloop/express
https://github.com/gulpjs/gulp
https://github.com/Kurento/kurento-client-js
https://github.com/kriskowal/q
http://socket.io

33

Chapter 6
Kurento media server
This chapter is a summary of the official Kurento 5.1.0 documentation[27] and contains information
how the media server works and explains the concept of pluggable media pipelines that allows for
a lot of flexibility in implementation.

Figure 6.1: Kurento clients and Kurento media server[27, chapter 3]

The Kurento media server has two different clients that may be used in a signaling application:
One for the Java EE environment, and one for Node.js. Both allow to trigger remote procedure
calls on the media server.

This allows to create media pipelines that contain several components. Figure 6.2 shows a pipeline
that is used for a two-way WebRTC conference that also records each participant’s stream to a file.

Figure 6.2: A recording pipeline for a two person WebRTC chat[27, chapter 9]

Each participant sends his stream to a WebRtcEndpoint in the media pipeline and receives another
stream back. The output point of the incoming transmission on a WebRtcEndpoint is in both cases

34 Chapter 6 Kurento media server

connected to a RecorderEndpoint and the input point of the outgoing transmission of the other
WebRtcEndpoint.

Also other components exists, for instance the Composite hub can be used to combine multiple
streams into a video wall and send this new video stream to multiple participants.
Media pipeline components

Figure 6.3: Several components usable on media pipelines[27, chapter 3]

35

Chapter 7
Signaling application
The structure and implementation conform to an event-driven architecture[28, chapter 2]. This
allows for a high concurrency of requests with high throughput while keeping the amount of side
effects as low as possible.

For tighter coupled components, like the inner workings of the main serverState module,
promises were used instead of the Node.js standard way of using error-first callback functions.
Because promises are not yet part of all ECMAScript implementations, the Q library[29] was used.
It allows to use promises and also provides a way to wrap error-first callback functions into promise
objects conforming to the coming standard definition of promises1.

7.1 Evented architecture
The signaling application is split into multiple independent node modules that communicate using
events2.
The three major modules and the events they use for communication are depicted in figure 7.13.

Figure 7.1: Evented architecture of the simucos signaling application

1Promises are part of ECMAScript 2015[30, section 18.3.18], formerly known ES Harmony.
2For events the Node.js EventEmitter [31, chapter 4] is used
3The diagram was created with the web tool gliffy http://www.gliffy.com/

http://www.gliffy.com/

36 Chapter 7 Signaling application

7.1.1 websocketHandler
All communication between the signaling application and the client, and between the signaling
application and the media server is done using WebSockets as defined in [RFC 6455]. The func-
tionality is located in the websocketHandler module, which abstracts the socket.io[32, chapter
4] library and raises received_message events when one of the WebSocket connections receives
data.
Each event contains the sending client’s unique id to identify the source and to allow a truly

asynchronous event propagation.

7.1.2 commandVerifier
The commandVerifier module listens to these events and verifies their structure and content.
Depending on the verification of the message either a rejected_message or a accepted_message
event are triggered.
Each rejected message is picked up by the websocketHandler and is used to send an error

message to the client that tried to send that message. An accepted message is read by the main
module, called serverState.
That way both partial messages and messages with malicious intent are not passed on to the

main application. Also the accepted messages are copied so that only the desired properties are
set, which also adds to the security of the application.

7.1.3 serverState
The serverState module consists of multiple sub modules that are not further described here but
are separated into functions for a relayed or a mixed conversation and also abstraction layers for
the media server and handling of the command messages.
After the message was parsed by the serverState module and the demanded actions were

executed, a send_message event is raised that either contains an answer to the client or an error
object that specifies a problem that occurred during executing the desired command.
The websocketHandler listens to these events and passes them on to the destination client.

7.2 Example: Start a conversation 37

7.2 Example: Start a conversation

Figure 7.24shows an overview of the sequence of events and user interactions that are needed to
start a conversation in simucos and connect a clients’ WebRTC browser to a WebRTC endpoint on
the Kurento media server.

Figure 7.2: Sequence diagram: How to start a conversation in simucos

Error handling and the verification of commands is omitted for brevity.

7.2.1 Step 1: Join a room

Simucos uses the concept of conversation rooms to support multiple conferences at the same time.
First the user needs to join a room by selecting one of the existing rooms that are displayed on the
landing page or by creating a new one. A third option is to join or create a room using a direct
link.
If either the room or the user does not yet exist in the simucos database, it is created.
After the user was successfully added to the room, it and all participants in it are displayed to

the user. After that the user may choose to send a video to the room.

4The diagram was created with the web tool gliffy http://www.gliffy.com/

http://www.gliffy.com/

38 Chapter 7 Signaling application

7.2.2 Step 2: Send a video stream
The user triggers the WebRTC getUserMedia()5request. After the user has chosen camera and/or
microphone an SDP offer is generated. That offer is sent as part of a send video message to simucos.
The signaling application checks if a media pipeline was already saved to its database for the

user’s conversation room. If not, it triggers a remote procedure call on the media server to generate
a media pipeline and stores its id after it was successfully created for further use.
Then a WebRTC endpoint is created on that media pipeline and its id is also stored. After that

the SDP offer is sent to the endpoint where it is processed to generate an SDP answer that is
returned to simucos and then delivered to the client.

7.2.3 Step 3: Communication stream
After that the client and the WebRTC endpoint on the media server negotiate a WebRTC peer
connection and the client sends his video stream to the media server.
If the conference type of the room was set to mixed, the media server sends the mixed video of

all participants back to the user. That way, only one connection is needed between the client and
the media server.
If a relayed conference was chosen, the media server sends the user’s own stream back while

in development mode or it does not return a stream in production mode. To display the other
participants in a relayed conversation, the client starts a new WebRTC peer connection for each
other participant and connects to their WebRTC endpoints on the media server.

5This call returns a media stream for use in WebRTC[4, section 10.2.1]

39

Chapter 8
Benchmarking WebRTC bandwidth usage

The implemented simucos prototype was used to conduct benchmarks on the behavior the We-
bRTC video stream transmission.

Several common video resolutions with aspect ratio of 4:3 or 16:9 ranging from 176x144 (QCIF) to
1080x720 (HD 720p) pixels were chosen and tested with different bandwidth limitations.

The gathered data is used to create a benchmark and formulate recommendations for the different
architecture options.

8.0.4 Limiting the bandwidth
In order to limit the bandwidth on the testing device, the Network Emulator Toolkit (NEWT)1was
used.

Figure 8.1: A WebRTC video stream at 176x144 with 15fps limited to 384kbps2

Figure 8.1 shows how the WebSocket connection is established after eight seconds (the first spike),
the SDP information is exchanged after 13 seconds, and after 15 seconds the video stream is sent
over the connection and effectively limited to 384 kbps.

Another feature of the WebRTC video transmission using VP8 can be seen in figure 8.2 between
16 and 26 seconds, where the codec bit rate is adapted multiple times to the available bandwidth
depending on the quality of the received video. After 26 seconds, WebRTC will still try to increase
the quality, but the bandwidth is limited to 512 kbps, resulting in a rippled continued graph.

1A program that was created my Microsoft for Visual Studio[33] that allows to limit bandwidth, simulate high
packet loss or high strain on network devices in windows by hooking up to the network interface driver.

40 Chapter 8 Benchmarking WebRTC bandwidth usage

Figure 8.2: A WebRTC video stream at 352x288 with15fps limited to 512kbps2

8.0.5 Bandwidth recommendations for one WebRTC stream

The bandwidth recommendations depicted in table 8.1 resulted of the gathered bandwidth data,
where for each resolution at a constant rate of 15 frames per seconds, and the bandwidth limitations
200 kbps, 384 kbps, 512 kbps, 1024 kbps, 2048 kbps, 4096 kbps were used.
Each conference was conducted for the duration of three minutes and the transmitted video was

always similar with one person sitting in front of the camera and waving a hand slowly. The video
was recorded on the media server.

After that, each recorded video was analyzed and the number of stream freezes, transmission
interruptions was noted down and used to find bandwidth recommendations for the specific reso-
lutions.

Table 8.1: Bandwidth recommendations with different video resolutions

Entry Resolution recommended ok2 maximum3

QCIF 176x144 384kbit/s 200kbit/s 700kbit/s
CIF 352x288 700kbit/s 384kbit/s 2000kbit/s

VGA 640x480 1024kbit/s 512kbit/s 2100kbit/s
HD 720p 1280x720 1900kbit/s 1024kbit/s 2500kbit/s

HD 1080p 1920x1080 - - -

2Created with the Network Emulator Toolkit
2Minor hickups in the stream at maximum one stream freeze per minute
3Maximum used bandwidth in this configuration

41

8.0.6 Needed bandwidth for different conference sizes
These figures are based on the recommended bandwidth for each video resolution with a fixed
rate of 15 frames per second and calculated for different numbers of participants with the different
multipoint architectures peer-to-peer (p2p), relayed and mixed.
Table 8.2 shows the bandwidth that is needed on each client’s side for a conversation, and

table 8.3 shows the bandwidth that is needed on the server side for the whole conversation.

Table 8.2: Client side:
Needed bandwidth depending on conference size and
multipoint architecture

QCIF (168x144)
participants 2 4 7 10

P2P 0.8 Mbit/s 2.3 Mbit/s 4.6 Mbit/s 6.9 MBit/s
Relay 0.8 Mbit/s 1.5 Mbit/s 2.7 Mbit/s 3.8 MBit/s
Mixer 0.8 Mbit/s 0.8 Mbit/s 0.8 Mbit/s 0.8 MBit/s

CIF (376x288)
participants 2 4 7 10

P2P 1.4 Mbit/s 4.2 Mbit/s 8.4 Mbit/s 12.6 MBit/s
Relay 1.4 Mbit/s 2.8 Mbit/s 4.9 Mbit/s 7.0 MBit/s
Mixer 1.4 Mbit/s 1.4 Mbit/s 1.4 Mbit/s 1.4 MBit/s

VGA (640x480)
participants 2 4 7 10

P2P 2.0 Mbit/s 6.1 Mbit/s 12.3 Mbit/s 18.4 MBit/s
Relay 2.0 Mbit/s 4.1 Mbit/s 7.1 Mbit/s 10.2 MBit/s
Mixer 2.0 Mbit/s 2.0 Mbit/s 2.0 Mbit/s 2.0 MBit/s

HD 720p (1080x720)
participants 2 4 7 10

P2P 3.8 Mbit/s 11.4 Mbit/s 22.8 Mbit/s 34.2 MBit/s
Relay 3.8 Mbit/s 7.6 Mbit/s 13.3 Mbit/s 19.0 MBit/s
Mixer 3.8 Mbit/s 3.8 Mbit/s 3.8 Mbit/s 3.8 MBit/s

42 Chapter 8 Benchmarking WebRTC bandwidth usage

8.0.7 Recommendations for different network environments
Several conclusions can be drawn from the figures calcuated in table 8.24:

In a 3G network, a conversation between two participants, or a mixed conference might work
with all tested resolutions.

In a 4G network, a peer-to-peer conversation with four participants might work with a resolu-
tion lower than VGA, a relayed conference might work with up to six participants on a VGA
resolution.

A p2p conversation with seven participants using a VGA resolution will most likely not work
when using a WLAN 802.11b router.

A WLAN 802.11g network is needed for a relayed conversation with 10 participants, while a
p2p conference with seven participants with a HD 720p resolution will need a higher bandwidth.

Table 8.3: Server side:
Needed bandwidth depending on conference size and
multipoint architecture

QCIF (168x144)
participants 2 4 7 10

Relay 1.5 Mbit/s 6.1 Mbit/s 18.8 Mbit/s 38.4 MBit/s
Mixer 1.5 Mbit/s 3.1 Mbit/s 5.4 Mbit/s 7.6 MBit/s

CIF (376x288)
participants 2 4 7 10

Relay 2.8 Mbit/s 11.2 Mbit/s 34.3 Mbit/s 70.0 MBit/s
Mixer 2.8 Mbit/s 5.6 Mbit/s 9.8 Mbit/s 14.0 MBit/s

VGA (640x480)
participants 2 4 7 10

Relay 2.0 Mbit/s 16.3 Mbit/s 50.2 Mbit/s 102.4 MBit/s
Mixer 2.0 Mbit/s 8.2 Mbit/s 14.3 Mbit/s 20.5 MBit/s

HD 720p (1080x720)
participants 2 4 7 10

Relay 7.6 Mbit/s 30.4 Mbit/s 93.1 Mbit/s 190 MBit/s
Mixer 7.6 Mbit/s 15.2 Mbit/s 26.6 Mbit/s 38 MBit/s

4Information about data rates in Wifi[11, chapter5-7], 3G[34] and 4G[35] networks.

43

Chapter 9
Lessons learned

9.1 Promises
Promises are a part of the coming ECMAScript 2015 standard[30] to allow developers to implement
data flow differently from using callback functions for dependency injection.

9.1.1 Example with promises
Listing 9.1 shows code that is used similarily in simucos to connect a user’s WebRTC peer connection
to a WebRTC endpoint on the media server and uses the kurento-client[36] JavaScript module.
Several functions need to be called after another while executing them asynchronously.

First, the user’s WebRTC endpoint needs to be connected to the media server, then the recording
of the video stream is started and in the end the user receives a message containing the SDP answer
to actually start sending data to the media server.

1 function connectUserToRelayedConference (user , sdpOffer) {
2 connectToMediaServer (user , sdpOffer)
3 .then(recordConnection (user. webRtcEndpoint))
4 .then(sendMessageTo (user , sdpAnswer))
5 .fail(function (reason) {
6 console .log("Error handling ");
7 });
8 }

Listing 9.1: Example for promises

On line 2 in listing 9.2 the Q library[29] is used to create a new promise object. On line 7 an
asynchronous call using an error-first callback function to retreive or create a media pipeline on
the media server is started. Before this function is called on line 8, the promise object is returned
on line 33.
When the callback function is called, a test is used to check for errors during that function. If

no errors occur, the promise object is resolved on line 24 and returns the SDP answer.
If an error occurred a new exception is thrown in the context of the connectToMediaServer

function that is caught in line 33 and rejects the promise object.
If the promise object was resolved, the function proceeds to line 4 of listing 9.1 and continues

the asynchronous function calls.
If the promise object was rejected, or any other promises like recordConnection or sendMessageTo

are rejected, the fail method is invoked in line 6 of listing 9.1 and centralized error handling can
be used there.

1 function connectToMediaServer (sendingUser , sdpOffer) {
2 var deferred = Q.defer ();
3 var roomId = sendingUser . roomId ;
4 var sourceEndpoint = sendingUser . webRtcEndpoint ;
5
6 try {

44 Chapter 9 Lessons learned

7 getPipeline (roomId , function (error , pipeline) {
8 if (error) { throw error; }
9

10 pipeline . create (’WebRtcEndpoint ’, function (error , endpoint) {
11 if (error) { throw error; }
12
13 endpoint . processOffer (sdpOffer , function (error , sdpAnswer) {
14 if (error) { throw error; }
15
16 sourceEndpoint . connect (endpoint , function (error) {
17 if (error) { throw error; }
18
19 var response = {
20 success : true , message : ’Everything is fine ’,
21 sdpAnswer : sdpAnswer
22 }
23
24 deferred . resolve (response);
25 });
26 });
27 });
28
29 } catch (err) {
30 deferred . reject (err);
31 }
32
33 return deferred . promise ;
34 });

Listing 9.2: Example to return a promise object from callbacks

9.1.2 Example with callback functions
The same example function can also be written using callback functions and would look like list-
ing 9.3 to inject the functions into the callbacks.

1 function connectUserToRelayedConference (user , sdpOffer) {
2
3 return connectToMediaServer (user , sdpOffer , funtion (error ,

sdpAnswer) {
4 if (error) { console .log("Error handling "); return ; }
5
6 return recordConnection (user. webRtcEndpoint , function (error) {
7 if (! error) {
8 sendMessageTo (user , sdpAnswer);
9 }

10 return ;
11 })
12 });
13 }

Listing 9.3: Example for error-first callbacks

The function connectToMediaServer from listing 9.2 would not change much as seen in list-
ing 9.4, but it would not return a promise object and isntead call a callback function that is passed
into it.

1 function connectToMediaServer (sendingUser , sdpOffer , callback) {
2 var roomId = sendingUser . roomId ;

9.1 Promises 45

3 var sourceEndpoint = sendingUser . webRtcEndpoint ;
4
5 try {
6 getPipeline (roomId , function (error , pipeline) {
7 if (error) { return callback (error); }
8
9 pipeline . create (’WebRtcEndpoint ’, function (error , endpoint) {

10 if (error) { return callback (error); }
11
12 endpoint . processOffer (sdpOffer , function (error , sdpAnswer) {
13 if (error) { return callback (error); }
14
15 sourceEndpoint . connect (endpoint , function (error) {
16 if (error) { return callback (error); }
17
18 var response = {
19 success : true , message : ’Everything is fine ’,
20 sdpAnswer : sdpAnswer
21 }
22
23 return callback (null , error);
24 });
25 });
26 });
27
28 } catch (err) {
29 return callback (err);
30 }
31 });

Listing 9.4: Example for error-first callbacks

9.1.3 Benefits from using promises

These simple examples show the beauty of the cleaner syntax that is possible using a promise based
API when compared to one based on callback functions.

WebRTC will also benefit from this and will allow even faster development cycles while simpli-
fying the code structure and improving its readability.

9.1.4 Combining the promise and error-first-callback approach

The Q library[29] also allows to create functions or modules that can both return a promise object
and call a callback function.
This approach was actually used in simucos to allow other modules to keep using their approach
when using the simucos module.

A simple example for this functionality is provided in listing 9.5, where the Node.js File API is
used to read a configuration file from disk.

1 //dual - module .js
2 var Q = require (’q’), fs = require (’fs’);
3
4 module . exports = {
5 readConfiguration : function (file , callback) {
6 var deferred = Q.defer ();

46 Chapter 9 Lessons learned

7
8 fs. readFile (function (error , data) {
9 if (error) deferred . reject (error);

10 else deferred . resolve (data);
11 });
12
13 deferred . promise . nodeify (callback);
14 return deferred . promise ;
15 }
16 }

Listing 9.5: Dual module that supports promises and callbacks

The function may then be used either with a promise-based approach as in listing 9.6 or using a
callback-based approach as in listing 9.7.

1 var DualModule = require (’dual - module ’);
2
3 DualModule . readConfiguration (’conf.json ’)
4 .then(function (data) {
5 //do something with the configuration data
6 })
7 .fail(function (reason) {
8 // initialize default values
9 })

Listing 9.6: Using a dual module with promises

1 var DualModule = require (’dual - module ’);
2
3 DualModule . readConfiguration (’conf.json ’, function (error , data) {
4 if (error) {
5 // initialize default values
6 }
7 else {
8 //do something with the configuration data
9 }

10 });

Listing 9.7: Using a dual module with callbacks

47

Chapter 10
Conclusion

10.1 Using WebRTC

It is shown, that WebRTC is a very mature technology despite its young age and the first approved
W3C Working Draft was released in February 2015.

The technology is needed, and it definitely has disruptive qualities as it enables web developers
to create communication applications in a very short time. Using preexisting VoIP technology,
expensive hardware and a lot more experience and time would have been needed to create a similar
solution.

The future will be very interesting concerning this technology, and especially the additional
features that are discussed for ORTC[9]: Allowing to exchange the unwieldy SDP messages with
concise JSON objects.
Also using stream quality data to further adapt the bit rate for the video codec and increase the
options for developers to access lower level functions in order to detect speaking participants or to
suppress background noise will even add to WebRTCs importance.
If WebRTC is adopted by VoIP engineers they will even be able to keep a substantial part of

their current market and create better solutions at the same time.

Another good feature that was already introduced into the current Working Draft is the switch
from inversion-of-control callbacks for the browser API to a promised-based approach, which is not
yet implemented into Mozilla Firefox nor Google Chrome.

10.2 Working with the Kurento media server

The Kurento media server is a very sophisticated piece of software that is in active development
and provides extensive documentation and an active community.
The API is very well thought out and even if the Java EE implementation is still needed when
trying to integrate SIP, the JavaScript Client[36] allows for rapid development and prototyping
without many obstacles.

10.3 Goals

Most of the goals for this thesis were achieved with the simucos prototype:
Conferences can be recorded on the media server as VP8 or h.264 video files.
Many clients may participate in a conference, the highest number tested was 25 in a mixed

conference, and 14 in a relayed conference.
Participants in restrictive network environments can connect to a conference using a STUN or

TURN server.
Only the optional goal to add support for SIP clients into simucos was not implemented due to

the chosen Node.js architecture.

48 Chapter 10 Conclusion

10.4 Future development
Right now simucos is being integrated into another prototype application that uses WebRTC peer-
to-peer conferences. The new prototype will be able to start conferences either using a peer-to-peer
full mesh network or a media server and also to switch the conference type.

10.4.1 Switching conference to the media server
The simplest option would be to switch the conference to a media server once a participant presses
a record button in the conversation.

10.4.2 Switching conferences as needed
An interesting addition to the prototype would be to start a conversation as a full mesh. As more
participants join into the conference, the conference switches first to a relayed and then to a mixed
conference on the media server.
This switch could occur either based on the number of participants alone or on the conference

size and the stream quality each participant achieves.

For the latter, the statistics module of WebRTC could be used and the signaling application
would calculate the overall quality of the conference. Also this mechanism could be used to reduce
the video resolution or bit rate, but functions like this are not yet part of the WebRTC specifica-
tion[10]. These are considered for inclusion into ORTC[9].

Also the conference should switch back to a full mesh architecture, if the number of participants
has decreased below the threshold or only participants with sufficient bandwidth and processing
power remain in the conference.

49

Part III

Appendix

Media server solutions for self deployment 51

Cloud based media server solutions 53

54 Comparsion of media servers

55

List of Figures

1.1 WebRTC triangle . 4

2.1 Possible multipoint communication architectures . 7
2.2 Exemplary video wall configurations . 9
2.3 Network Address Translation . 10
2.4 Example for a symmetric NAT . 11
2.5 Traversal Using Relays Around NAT (TURN) . 12
2.6 SIP session establishment example with excerpt of SDP data 13

3.1 Star network . 17
3.2 full mesh network with four participants . 17
3.3 Current multiple track support in a media stream . 18
3.4 A relaying media server . 21
3.5 A mixing media server . 23

5.1 Prototype application overview . 31

6.1 Connection of Kurento Clients to Kuento Media Server 33
6.2 A recording pipeline for a two person WebRTC chat 33
6.3 Components on a media pipeline . 34

7.1 Evented architecture in simucos . 35
7.2 Starting a conversation in simucos . 37

8.1 WebRTC video stream limited to 384kbps . 39
8.2 WebRTC video stream limited to 512kbps . 40

57

List of Tables

3.1 Comparison relaying media server . 22
3.2 Comparison mixing media server . 24

5.1 Third party code used in the signaling application 32

8.1 Bandwidth recommendations with different video resolutions 40
8.2 Bandwidth requirements on client side of conversation 41
8.3 Bandwidth requirements on server side of conversation 42

59

Listings

9.1 Example for promises . 43
9.2 Example to return a promise object from callbacks 43
9.3 Example for error-first callbacks . 44
9.4 Example for error-first callbacks . 44
9.5 Dual module that supports promises and callbacks 45
9.6 Using a dual module with promises . 46
9.7 Using a dual module with callbacks . 46

61

Glossary

1080p A video format with a resolution of 1920x1080 pixels. Commonly referred to as
Full-HD.

720p A video format with resolution of 1280x720 pixels.

API Application Programming Interface

DOS Denial of Service
Often also Distributed Denial of Service (DDOS) an attack that overwhelms a
server by sending more requests than it can handle.

DTLS Datagram Transport Layer Security
A cryptographic protocol that is used to encrypt UDP connections.

ECMA Ecma International, an organization dedicated to the standardization of infor-
mation and communication systems.

ECMAScript . Abbreviation for a scripting language specified in ECMA-262, implemented for
instance as JavaScript or JScript.

H.264 Also known as MPEG-4 Advanced Video Coding (MPEG-4 AVC)
is a video format that is mandatory for WebRTC and licensed by the MPEG
LA

H.264 SVC . . SVC features for the H.264 video codec.

H.265 See HEVC

HEVC High Efficiency Video Coding
A successor to the H.264 video format and sometimes referred to as H.265.

IETF Internet Engineering Task Force
An open standards organization that develops and promotes Internet standards.

ITU International Telecommunication Union
A United Nations agency dedicated to information and communication technolo-
gies. Standardized for instance the G.711 audio codec[18] used in WebRTC.

Java EE Java Platform, Enterprise Edition
A java based computing platform used for Web services.

JSEP JavaScript Session Establishment Protocol

JSON JavaScript Object Notation
Data structure format that wraps ECMAScript objects to string and back.

MCU Multipoint Control Unit
Is used in multipoint conferencing solutions. It forwards all streams to all par-
ticipants.

MP4 MPEG 4 a video compression format

MPEG LA . . MPEG Licensing Administration
A company that administrates patent pools for multiple multimedia standards,
for instance H.264 or HEVC

Node.js An application framework often used for web applications, uses V8 and an Event
Loop at its core.

62 Glossary

ORTC Object RTC
Compatible to WebRTC, sometimes called WebRTC 1.1. Main difference to
WebRTC 1.0 is to exchange text-based SDP with JSON-objects, also the web
programmers have more control over the media stream.

PSTN Public Switched Telephone Network.
RPC Remote Procedure Call
SDP Session Description Protocol

A text based format to describe streaming media initialization parameters, both
used with SIP and WebRTC.

SFU Selective Forwarding Unit
Is used in multipoint conferencing solutions. It forwards only selected streams
to the participants.

SIP Session Initialization Protocol
A signaling protocol for multimedia communication, is often used for VoIP.

SVC Scalable Video Coding, features a base layer that provides a specific resolution
of a video and different sub-layers that enhance the base layer to increase the
video quality, resolution or frame rate. Adapts very well to different bandwidths.

TLS Transport Layer Security
A cryptographic protocol that is used to encrypt TCP connections.

UHD Ultra High Definition Video
Also known as 4K, is used for a video format with four times as many pixels as
Full-HD 1080p

V8 ECMAScript runtime developed by Google for the Chrome browser. Is also used
for Node.js.

VoIP Voice over IP
Internet telephony.

VP8 One of the mandatory codecs of WebRTC, is released by Google free of licensing
fees.

VP9 Successor of VP8, will feature Scalable Video Coding.
WebRTC . . . Web Real-Time Communication

Is defined in version 1.0 and currently has the status of a W3C Working Draft
WebSocket . . A protocol that provides full-duplex communication using a single TCP connec-

tion.
W3C World Wide Web Consortium

Organization that formulates standards to be used in the world wide web.
W3C WD . . . W3C Working Draft

Multiple stages are needed to formulate a new W3C standard: First a Working
Draft is formulated. After that a Candidate Recommendation then a Pro-
posed Recommendation and in the end the document receives the status of
an official W3C Recommendation.

WebRTC . . . Web Real-Time Communication
An effort by the W3C, IETF and several companies to enable real time commu-
nication between browsers without needing any additional plugins. Currently
still under development.

63

Bibliography

[1] R. Manson, Getting started with WebRTC: Explore WebRTC for real-time peer-to-
peer communication, ser. Community experience distilled. Birmingham, UK: Packt
Pub., 2013, isbn: 1782166319.

[2] S. Loreto and S. P. Romano, Real-Time Communication with WebRTC: Peer-to-
Peer in the Browser. Sebastopol, CA: O’Reilly Media, 2014, isbn: 9781449371852.
[Online]. Available: 9781449371852.

[ECMAScript] Ecma International, Standard ecma-262 - ecmascript language specification, Jun.
2011. [Online]. Available: http://www.ecma-international.org/publications/
standards/Ecma-262.htm (visited on Feb. 20, 2015).

[3] J. Uberti, C. Jennings, and E. Rescorla, “Javascript session establishment pro-
tocol”, IETF Secretariat, Internet-Draft draft-ietf-rtcweb-jsep-08, 2014. [Online].
Available: http://www.ietf.org/internet- drafts/draft- ietf- rtcweb-
jsep-08.txt (visited on Feb. 21, 2014).

[RFC 4566] M. Handley, V. Jacobson, and C. Perkins, SDP: Session Description Protocol, RFC
4566 (Proposed Standard), Internet Engineering Task Force, Jul. 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4566.txt.

[4] D. C. Burnett, A. Bergkvist, C. Jennings, and A. Narayanan, “Media capture
and streams”, W3C, W3C Working Draft, Feb. 2015. [Online]. Available: http:
//www.w3.org/TR/2015/WD- mediacapture- streams- 20150212/ (visited on
Feb. 20, 2015).

[5] R. Jesup, S. Loreto, and M. Tuexen, “Webrtc data channels”, IETF Secretariat,
Internet-Draft draft-ietf-rtcweb-data-channel-13, 2015. [Online]. Available: http:
//www.ietf.org/internet- drafts/draft- ietf- rtcweb- data- channel-
13.txt (visited on Feb. 21, 2014).

[6] H. Alvestrand, “Overview: real time protocols for browser-based applications”,
IETF Secretariat, Internet-Draft draft-ietf-rtcweb-overview-13, Nov. 2014. [On-
line]. Available: http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-
overview-13.txt (visited on Feb. 20, 2015).

[7] IDC, Smartphone os market share, 2014. [Online]. Available: http://www.idc.
com/prodserv/smartphone-os-market-share.jsp (visited on Feb. 20, 2015).

[8] W3C ORTC Community Group, ORTC (Object RTC) | Object API for RTC -
Mobile, Server, Web, Oct. 2014. [Online]. Available: http://ortc.org/ (visited
on Feb. 21, 2015).

[9] R. Raymond, B. Aboaba, and J. Uberti, “Object RTC (ORTC) API for WebRTC”,
W3C ORTC Community Group, W3C Community Draft, Jan. 2015. [Online].
Available: http://ortc.org/wp-content/uploads/2015/01/ortc.html (visited
on Feb. 21, 2015).

[10] D. C. Burnett, A. Bergkvist, C. Jennings, and A. Narayanan, “Webrtc 1.0: real-
time communication between browsers”, W3C, W3C Working Draft, Feb. 2015.
[Online]. Available: http://www.w3.org/TR/2015/WD-webrtc-20150210/ (visited
on Feb. 21, 2015).

[11] I. Grigorik, High-performance browser networking. 2013, isbn: 1449344763.

9781449371852
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-jsep-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-jsep-08.txt
http://www.ietf.org/rfc/rfc4566.txt
http://www.w3.org/TR/2015/WD-mediacapture-streams-20150212/
http://www.w3.org/TR/2015/WD-mediacapture-streams-20150212/
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-data-channel-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-data-channel-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-data-channel-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-overview-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-overview-13.txt
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://ortc.org/
http://ortc.org/wp-content/uploads/2015/01/ortc.html
http://www.w3.org/TR/2015/WD-webrtc-20150210/

64 Bibliography

[12] Matroska (non-profit org, What is matroska?, 2013. [Online]. Available: http :
/ / www . matroska . org / technical / whatis / index . html (visited on Feb. 21,
2015).

[13] J. Doyle and J. D. Carroll, Routing TCP/IP, ser. CCIE professional development.
Indianapolis, Ind.: Cisco Press, 2001, isbn: 1-57870-089-2.

[RFC 5245] J. Rosenberg, Interactive Connectivity Establishment (ICE): A Protocol for Net-
work Address Translator (NAT) Traversal for Offer/Answer Protocols, RFC 5245
(Proposed Standard), Updated by RFC 6336, Internet Engineering Task Force,
Apr. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5245.txt.

[14] B. Ford, Peer-to-peer communication across network address translators, Jun.
2005. [Online]. Available: http://brynosaurus.com/pub/net/p2pnat/ (visited
on Feb. 14, 2015).

[RFC 3489] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, STUN - Simple Traversal
of User Datagram Protocol (UDP) Through Network Address Translators (NATs),
RFC 3489 (Proposed Standard), Obsoleted by RFC 5389, Internet Engineering
Task Force, Mar. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3489.
txt.

[RFC 5766] R. Mahy, P. Matthews, and J. Rosenberg, Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN), RFC
5766 (Proposed Standard), Internet Engineering Task Force, Apr. 2010. [Online].
Available: http://www.ietf.org/rfc/rfc5766.txt.

[RFC 3261] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler, SIP: Session Initiation Protocol, RFC 3261 (Pro-
posed Standard), Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630,
5922, 5954, 6026, 6141, 6665, 6878, Internet Engineering Task Force, Jun. 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3261.txt.

[15] A. B. Johnston, SIP: Understanding the Session Initiation Protocol, Third Edition,
3rd ed. Norwood: Artech House, 2009, isbn: 1607839962.

[16] J.-M. Valin and C. Bran, “Webrtc audio codec and processing requirements”,
IETF Secretariat, Internet-Draft draft-ietf-rtcweb-audio-07, 2014. [Online]. Avail-
able: http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-audio-
07.txt (visited on Feb. 20, 2015).

[RFC 6716] J. Valin, K. Vos, and T. Terriberry, Definition of the Opus Audio Codec, RFC
6716 (Proposed Standard), Internet Engineering Task Force, Sep. 2012. [Online].
Available: http://www.ietf.org/rfc/rfc6716.txt.

[RFC 3551] H. Schulzrinne and S. Casner, RTP Profile for Audio and Video Conferences with
Minimal Control, RFC 3551 (INTERNET STANDARD), Updated by RFCs 5761,
7007, Internet Engineering Task Force, Jul. 2003. [Online]. Available: http://www.
ietf.org/rfc/rfc3551.txt.

[17] O. Hersent, J.-P. Petit, and D. Gurle, Beyond VoIP protocols: Understanding voice
technology and networking techniques for IP telephony. Hoboken, NJ: John Wiley,
2005, isbn: 978-0-470-02362-4.

[18] “Transmission systems and media, digital systems and networks”, International
Telecommunication Union, Tech. Rep. [Online]. Available: http://www.itu.int/
rec/T-REC-g (visited on Feb. 20, 2015).

http://www.matroska.org/technical/whatis/index.html
http://www.matroska.org/technical/whatis/index.html
http://www.ietf.org/rfc/rfc5245.txt
http://brynosaurus.com/pub/net/p2pnat/
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-audio-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-audio-07.txt
http://www.ietf.org/rfc/rfc6716.txt
http://www.ietf.org/rfc/rfc3551.txt
http://www.ietf.org/rfc/rfc3551.txt
http://www.itu.int/rec/T-REC-g
http://www.itu.int/rec/T-REC-g

Bibliography 65

[19] &yet, Is WebRTC ready yet. [Online]. Available: http://iswebrtcreadyyet.com/
(visited on Feb. 20, 2015).

[RFC 5117] M. Westerlund and S. Wenger, RTP Topologies, RFC 5117 (Informational), Inter-
net Engineering Task Force, Jan. 2008. [Online]. Available: http://www.ietf.
org/rfc/rfc5117.txt.

[20] M. Westerlund and S. Wenger, “Rtp topologies”, IETF Secretariat, Internet-Draft
draft-ietf-avtcore-rtp-topologies-update-05, 2014, http://www.ietf.org/internet-
drafts/draft- ietf- avtcore- rtp- topologies- update- 05.txt. (visited on
Feb. 20, 2015).

[21] HP, HP Servers running HP-UX 11i, 2013. [Online]. Available: http://h18000.
www1.hp.com/products/servers/byos/hpuxservers.html (visited on Feb. 22,
2015).

[22] A. Roach, “Webrtc video processing and codec requirements”, IETF Secretariat,
Internet-Draft draft-ietf-rtcweb-video-04, 2015. [Online]. Available: http://www.
ietf.org/internet-drafts/draft-ietf-rtcweb-video-04.txt (visited on
Feb. 20, 2015).

[23] Cisco, Openh264 frequently asked questions. [Online]. Available: http : / / www .
openh264.org/faq.html (visited on Feb. 20, 2015).

[24] Luigi Byun (zziuni@gmail.com), STUN server list. [Online]. Available: https :
//gist.github.com/zziuni/3741933 (visited on Feb. 20, 2015).

[25] Kurento Technologies, Kurento Open Source Software WebRTC media server. [On-
line]. Available: http://www.kurento.org/whats-kurento (visited on Feb. 20,
2015).

[26] M. Cantelon, M. Harter, T. J. Holowaychuk, and N. Rajlich, Node.js in action.
Greenwich, Conn.: Manning, 2013, isbn: 9781617290572.

[27] Kurento, Kurento JavaScript Client JSDoc. [Online]. Available: http : / / www .
kurento.org/docs/5.1.0/ (visited on Feb. 22, 2015).

[28] O. Etzion and P. Niblett, Event processing in action. Greenwich: Manning, 2011,
isbn: 1935182218.

[29] K. Kowal,Q - a tool for creating and composing asynchronous promises in javascript.
[30] M. J. Orendorff, Ecmascript language specification ecma-262 6th edition - draft.
[31] T. Hughes-Croucher, M. Wilson, Node: Up and Running: Scalable Server-Side

Code with JavaScript, 1. edition. Sebastopol, CA: O’Reilly & Associates, Apr.
2012, isbn: 1449398588.

[RFC 6455] I. Fette and A. Melnikov, The WebSocket Protocol, RFC 6455 (Proposed Standard),
Internet Engineering Task Force, Dec. 2011. [Online]. Available: http://www.
ietf.org/rfc/rfc6455.txt.

[32] R. Rai, Socket.io Real-time Web Application Development. Birmingham: Packt
Pub., Feb. 2013, isbn: 9781782160786.

[33] M. Pol, Network emulator toolkit.
[34] Wikipedia, 3g. [Online]. Available: http://en.wikipedia.org/wiki/3G#Data_

rates (visited on Feb. 22, 2015).
[35] ——, 4g. [Online]. Available: http://en.wikipedia.org/wiki/4G#LTE_Advanced

(visited on Feb. 22, 2015).

http://iswebrtcreadyyet.com/
http://www.ietf.org/rfc/rfc5117.txt
http://www.ietf.org/rfc/rfc5117.txt
http://www.ietf.org/internet-drafts/draft-ietf-avtcore-rtp-topologies-update-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-avtcore-rtp-topologies-update-05.txt
http://h18000.www1.hp.com/products/servers/byos/hpuxservers.html
http://h18000.www1.hp.com/products/servers/byos/hpuxservers.html
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-video-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-video-04.txt
http://www.openh264.org/faq.html
http://www.openh264.org/faq.html
https://gist.github.com/zziuni/3741933
https://gist.github.com/zziuni/3741933
http://www.kurento.org/whats-kurento
http://www.kurento.org/docs/5.1.0/
http://www.kurento.org/docs/5.1.0/
http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6455.txt
http://en.wikipedia.org/wiki/3G#Data_rates
http://en.wikipedia.org/wiki/3G#Data_rates
http://en.wikipedia.org/wiki/4G#LTE_Advanced

66 Bibliography

[36] Kurento, Kurento JavaScript Client JSDoc. [Online]. Available: http : / / www .
kurento.org/docs/current/langdoc/jsdoc/kurento-client-js/index.html
(visited on Feb. 22, 2015).

http://www.kurento.org/docs/current/langdoc/jsdoc/kurento-client-js/index.html
http://www.kurento.org/docs/current/langdoc/jsdoc/kurento-client-js/index.html

	Theoretical part
	Introduction
	Definition of goals
	Introduction WebRTC
	What does WebRTC do
	ECMAScript API
	Types of WebRTC-compatible devices
	Is it ready yet?
	More information

	Goals to achieve with the solution
	Multipoint conferencing with WebRTC
	Recording conferences
	Where to record conferences
	Record mechanism

	Enabling a connection in a NAT environment
	Network Address Translation (NAT)
	Interactive Connectivity Establishment (ICE)
	Specifics about the ICE protocol in WebRTC

	Connecting SIP compatible devices with WebRTC devices
	About the Session Instantiation Protocol (SIP)
	Problems when connecting SIP and WebRTC devices
	How to connect SIP and WebRTC

	Benefits of using a central media server
	Concerning the goals
	Recording
	Number of participants
	Enabling a connection in a NAT environment
	Connecting to SIP networks/devices

	Possible multipoint conferencing architectures
	Full mesh network
	Clarifications
	Architecture definition
	Examples
	Comparison of multipoint architectures

	Components for the solution
	Media server
	Hardware or software based
	For the purpose of a WebRTC media server

	Signaling application
	Connecting the media server and a participant
	Client side
	Additional tasks in a production environment

	STUN and TURN server

	Practical part
	The prototype
	Copyright
	Media server
	Comparison of existing media server solutions
	Selection of Kurento media server

	Signaling application
	STUN server

	Kurento media server
	Signaling application
	Evented architecture
	websocketHandler
	commandVerifier
	serverState

	Example: Start a conversation
	Step 1: Join a room
	Step 2: Send a video stream
	Step 3: Communication stream

	Benchmarking WebRTC bandwidth usage
	Limiting the bandwidth
	Bandwidth recommendations for one WebRTC stream
	Needed bandwidth for different conference sizes
	Recommendations for different network environments

	Lessons learned
	Promises
	Example with promises
	Example with callback functions
	Benefits from using promises
	Combining the promise and error-first-callback approach

	Conclusion
	Using WebRTC
	Working with the Kurento media server
	Goals
	Future development
	Switching conference to the media server
	Switching conferences as needed

	Appendix
	Comparison of media servers
	Media server solutions for self deployment
	Cloud based media server solutions
	List of Figures
	List of Tables
	List of Code Listings
	Glossary
	Bibliography

